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Development of Thermal Error Model with Minimum Number of
Variables Using Fuzzy Logic Strategy

Jin-Hyeon Lee, Jae-Ha Lee, Seung-Han Yang"
Department of Mechanical Engineering, Kyungpook National University, Daegu 702-701, Korea

Thermally-induced errors originating from machine tool errors have received significant
attention recently because high speed and precise machining is now the principal trend in
manufacturing processes using CNC machine tools. Since the thermal error model is generally
a function of temperature, the thermal error compensation system contains temperature sensors
with the same number of temperature variables. The minimization of the number of variables in
the thermal error model can affect the economical efficiency and the possibility of unexpected
sensor fault in a error compensation system. This paper presents a thermal error model with
minimum number of variables using a fuzzy logic strategy. The proposed method using a fuzzy
logic strategy does not require any information about the characteristics of the plant contrary to
numerical analysis techniques, but the developed thermal error model guarantees good
prediction performance. The proposed modeling method can also be applied to any type ofCNC
machine tool if a combination of the possible input variables is determined because the error
model parameters are only calculated mathematically based on the number of temperature
variables.

Key Words: Thermal Error Model, Temperature Variable, Model Performance, Fuzzy Logic,
CNC Machine Tool

1. Introduction

The recent trend in manufacturing processes is
demanding high spindle speeds and precision
machining to improve productivity and product
quality. This high speed operation of machine
tools induces thermal errors, which are known to
be key contributors to machine tool errors (Bryan,
1990) .

Error compensation systems have received wide
attention in relation to their ability to cost
effectively improve machine accuracy. However,
the effectiveness of an error compensation system
relies on the prediction accuracy of the error
model, which in turn is affected by the modeling

• Corresponding Author,
E-mail: syang@knu.ac.kr
TEL: +82-53-950-6569; FAX: +82-53-950-6550
Department of Mechanical Engineering, Kyungpook
National University, Daegu 702-701, Korea. (Manusc­
ript Received March 2, 2001; Revised August 9, 2001)

method applied, appropriate selection of input
variables, etc.

There are two main research areas related to
thermal error modeling. The first area is numeri­
cal analysis techniques, such as the finite element
methodf'Weck and Zangs, 1975; Venugopal and
Barash, 1986) and finite difference method
(Moriwaki, 1988). Yet, these techniques are re­
stricted to a qualitative analysis of machine ther­
mal behavior because the boundary conditions
and heat transfer characteristics can not be clearly
identified (Bryan, 1990).

The second area is empirical modeling based
on the measurement of thermal errors and
temperatures at several representative points on
the machine tools. Examples include engineering
judgement (Yang et al., 1996), regression analysis
(Fan et al., 1992; Soons et al., 1994), and neural
networks (Hatamura, 1993; Yang et al., 1996).
Empirical models have been demonstrated to
show satisfactory prediction accuracy in many
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2. Fuzzy Implication and Reasoning

The inferred value yt by the i-th implication is
defined as

In the implication by Takagi and Sugeno
(1983), "and" connectives and linguistic
expressions are used in the premise and the con­
sequence is general function relation. If the func­
tion gl in the consequence has the format of a

(3)n
L: WI
1=1

n
L: MYI*
1=1y*

If xt=Anl and... and x.=An., theny=g.(Xlo -t-, x.)

y=y'

x,=x1 and x,=x~ and ... and x.=xe
If x,=AIl and andx.=A",. theny=g,(x,..... x.)

If x,=An and andx.=A,.. theny=g:(x" -t-, x,J

output

input

implication L,

implication L,

implication Ln

The truth value WI of the proposition yt=y* is
calculated by the equation

wI=Au{xY) t\ '" t\Alk{X~) (2)

The final output y* inferred from n implications
is given as weighted combination.

In this study, the membership function of a
fuzzy set A is denoted as A (x}, xEX. The truth
value of a proposition "x is A and y is B" is
expressed by

I x is A and y is B I=A{x) t\B{y)

Takagi and Sugeno (1983) has proposed the
fuzzy implication LI{i=I,'" n) for a multi input
single output system (MISO) with input variables
xl, X2, "', Xk, and output variable y.

characteristics of the plant. The thermal error
modeling method proposed in this study can be
widely applied to any type of CNC machine tool
if a combination of the possible input variables is
determined because the parameters of the error
model are only calculated mathematically based
on the number of temperature variables.

applications even though each method has its
own inherent shortcomings.

Although various empirical modeling methods
have been developed for identifying thermal
errors in CNC machine tools, scant attention has
been paid to the application of a fuzzy logic
strategy. Moreover, an error compensation system
contains temperature sensors with the same num­
ber of temperature variables because the thermal
error model is generally a function of tempera­
ture. The minimization of the number of variables
in a thermal error model can affect the
economical efficiency and the possibility of
unexpected sensor fault in an compensation sys­
tem. Accordingly, this study uses a fuzzy logic
strategy to develop a thermal error model with
minimum number of variables for a CNC ma­
chine tool. Of course, the prediction performance
of the error model must be guaranteed even
though the number of variables is minimized.

Fuzzy logic originates from the research of
Zadeh (1965), who introduced a possibility model
based on the analysis of a fuzzy set. Thereafter,
Tanaka et al (1982) proposed a linear regression
analysis using the concept of possibility and fur­
ther developed the possibility model.

In the conventional regression model, the dif­
ference between observed data and values
predicted by the model is regarded as the obser­
vation error, whereas, in a fuzzy linear regression
analysis based on the possibility model, this dif­
ference is regarded as the fuzziness of the system
itself. As such, the fuzzy linear regression analysis
is the formulation for the possibility distribution
of the inferred output from the viewpoint of
possibility and the membership function can be
regarded as the possibility distribution.

The fuzzy implication used in this study is quite
simple as it is based on a fuzzy partition of the
input space. In each fuzzy subspace, a linear input­
output relation is formed. The output of the fuzzy
reasoning is given by the aggregation of the values
inferred by certain implications applied to the
input.

In contrast to a numerical analysis method, the
proposed method using a fuzzy logic strategy does
not require any detailed information about the
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Fig. 1 Experimental apparatus with machining
center and sensing units

The experimental apparatus was composed of a
machining center and sensing units, as shown in
Fig. 1. The sensing units were thermal sensors and
a displacement sensor. Thermocouples were used
as thermal sensors to detect the variation of tem­
perature in the machine structure and a capaci­
tance sensor was used as the displacement sensor
to detect spindle drift errors on the z-axis,

Fourteen thermocouples were initially mounted
on the machine to detect the temperature field, as
shown in Fig. I. Sensors T I and T2 provided
temperature readings on the nut and leadscrew
bearing of the x-axis, sensors T3 and T4 on the
nut and leadscrew bearing of the y-axis, sensors
T5 and T6 on the nut and leadscrew bearing of
the z-axis, sensors T7 and T8 on the spindle,
sensors T9, TIO, Til, and TI2 on the column,
and sensors T 13 and T 14 on the x-axis bed and z­
axis bed, respectively. A non-contacting dis­
placement sensor was also settled on the z-axis
bed.

To investigate the thermal behavior of this
machining center, tests were performed under the
following conditions.
• The running conditions were divided into 3

classes to consider the actual environment in
the industrial shop : stop (spindle 0 rpm,
feedrate 0 mm/min), low speed (spindle 600

Choose premise
Structure of stage i+1

4. Modeling and Discussion

4.1 Choice of premise structure
There are two problems concerned with the

rpm, feedrate 508 rum/min), and high speed
(spindle 3000 rpm, feedrate 2006 mm/min)

• The running conditions were arbitrarily
combined to remove the effect of an
experimental sequence. The temperature field
and spindle drift error were recorded every 30
minutes by moving the X, Y, Z tables in a body
-diagonal direction.

Fig. 2 Flowchart of modeling algorithm

In the proposed thermal error modeling, the
temperature difference L1T from a reference tem­
perature is assigned as the variable of the thermal
error model. Since the temperature measurement
from the sensor T 14 fluctuated the least, this
temperature measurement was used as the refer­
ence temperature.

Figure 2 represents the proposed modeling
algorithm and the following gives a detailed
description of each step. For a fuzzy model
consisting of a certain number of implications
that are of the format in Eq. (4), the following
three items must be determined by the input­
output data of an objective system.

(4)

3. Experiment

linear function, the implication is written as

L1 : If Xl is An and ... and Xk is A1k

then y= PIO +pnxi+... +Plk Xk
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choice of premise structure. The first is the choice

of a combination of premise variables for possible

input variables. The second is the choice of a

variable for dividing the space and the number of

divisions.

With the first problem, the choice of a combi­

nation of input variables is a key difficulty for the

thermal error modeling. As a solution of this
problem, a statistical optimization method was

used in the previous study (Hwang et aI., 1999). In

general, a statistical regression model shows a

tendency increasing the prediction accuracy if the

number of variables for the model is increased.
Yet, the number of cases requiring consideration

will be too high if all the variables are used for

the modeling, furthermore, a disadvantage will
arise from a viewpoint of the number of sensors.

Even in practical aspect, it is more beneficial to

develop a thermal error compensation system

with fewer temperature sensors.

Since the main purpose of this study is the
development of a thermal error model with mini­

mum number of variables, a result of the statisti­

cal optimization methodt Hwang et al., 1999) is
adopted as a starting model for reducing the

number of variables. From the starting model, the

variable with less contribution to error prediction

will be eliminated step by step. The number of
variables by the statistical optimization method

was four, so the prediction accuracy will be de­

creased in a general regression model if the num­
ber of variables is less than four. In this study, the

fuzzy logic strategy will complement the reduc­

tion effect of the number of variables.

With the second problem of choosing a vari­
able for dividing the space and the number of

divisions, there would seem to be no theoretical
approach currently available. Therefore, a

heuristic search method (Takagi and Sugeno,
1985) is applied with a performance index to

judge the best partition of variables. The per­
formance index is defined as in the following Eq.

(5) (Horikawa et aI., 1992).

E=.)(EA+EB) +UC (5)

EA=};(YA-YA) 2, EB=};(YB-YB)2

UC=,j}; (YA-YAB) 2+}; (YB- YBA) 2

where, DC (unbiasedness criterion) (Ivakhnenko,

1971) represents the generality of the model. To

calculate the DC value, the output data of the

objective system are divided into two groups. The

data scattering within the two groups is almost
the same. Therefore, since the maximum to mini­

mum range of both groups is nearly the same, a

data group must not be composed of data from

only one specified operating condition i. e. high

speed operation or low speed operation. The

measured data are thus divided into group A and
group B using the average and variance. In the

expression of DC, YAH means the estimated value

of group A based on the model using group B
data and vice versa for the YBA.

The heuristic search method proceeds in the

following steps. Suppose that a fuzzy model of k­
inputs xl, X2, ••• , Xk and single-output system is

built.
STEP 1 : The range of anyone variable is

divided into two fuzzy subspaces "big"

and "small", whereas the ranges of the
other variables are not divided, which

means that only the variable with a

divided subspace appears in the

premises of the implications.
STEP 2 : For the model established in STEP I,

the optimal premise parameters and

consequence parameters are identified
using the performance index. Once the

optimal model with the least perform­
ance index is determined from the k­

models, the variable in this optimal

model is divided into more than two

subs paces. The calculation of the
parameters and the performance index is

then repeated. When a final optimal

model is obtained, this is called a stable
state.

STEP 3 : Starting from the stable state at STEP

2, where only the variable x, appears in

the premises, take all the combinations
of Xt-Xj(j= 1,2 .. ', k) and divide the

range of variable x, into fuzzy subspaces

step by step.

STEP 4 : Repeat STEP 2 and STEP 3 until a
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Fig. 3 Schematic diagram of heuristic search method
for the best partition of premise variables

final search solution is obtained.

A schematic diagram of the heuristic search

method for the best partition of premise variables

is represented in Fig. 3.

backpropagation gradient decent method is used

for the optimal solution.

The consequence parameters that produce the

lowest performance index are determined using

the least square method for the premise variables

given in sectio n 4. 1 and premise parameters as

abo ve.

4.3 Application to experimental data
The thermal error model by a statistical

optimization method for the CNC machine tool

used in this study is composed of four variables,

LIT2 ,LIT5, LIT7, LITs. Based on the contribution

analysis of the variables to error prediction per­

formance (Lee and Yang, 2001), two cases are

investigated. The first case has variables LIT2,

LIT7, LITs as the premise variables (CASE 1). This

case has the same variables as a previous study

(Lee et aI., 2000) using a backward elimination

method. The second case has variables LIT2, LIT7
as the premise variables (CASE II) .

Table I is a summary of the fuzzy partition

results using the heuristic search method. Based

on the variation of performance index E, the

optimal model with the minimum performance

index is attained when the variable L117 is divided

into .two subspaces. Figure 4 plots the member­

ship function using the premise parameters of the

optimal model. Using this premise structure, the

consequence parameters are then optimized by the

least square method. The final fuzzy model for

thermal error is shown in Eq. (7).

If LI17 is small,

then ~=-7.11 +2.33* ,::m+ 1.80* LIT7-39.41* LtTs
If LIT7 is big, (7)

then ~= 11.56-8.51 * LtT2+7.31 * LI17+72.09 * LtTs

Table 2 is a summary of the fuzzy partition

results in case of two variables, and Fig. 5 shows

the membership function using the premise

parameters in Table 2 for the optimal model with

two variables. For this case , the optimal model is

obtained when the variable LIT2 is divided into

three subspaces. The final fuzzy model in case of

two variables is sho wn in Eq . (8) .

If LIT2 is small,

then 8=-12.92+4.82*LIT2 - 23.59*LIT7

(6)A (x)

4.2 Premise and consequence parameters
identification

This step identifies the optimal premise

parameters for the premise variables chosen at

Sec. 4.1. The identification of premise parameters

is for determining the membership functions. The

temperature variation of a CNC machine tool in

this study has an almost exponential tendency in

relation to machine tool operation. As such, a

bell-type membership function is used for the

thermal error modeling in this study. The

mathematical expression of a bell-type member­

ship function is shown in Eq . (6).

where, constant c represents the symmetry po int,

constant a is the distance from the symmetry

point to the po int having funct ion value of 0.5,

and the exponent b determines the function shape.

Based on assuming the values of the premise

parameters, the optimal consequence parameters

can be obtained together with the performance

index. As a result, the problem of identifying the

optimal premise parameters can be reduced to a

nonlinear programming problem of minimizing

the per formance index. In this study,
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Table 1 Summary of fuzzy partition results for
CASE I

Table 2 Summary of fuzzy partition results for
CASE II

Step
Fuzzy partition Performance Premise parameters

at: LlT7 LlTa index E [a b cJin Eq.(6)

2 1 I 90.536
[3.295 2 1.39]

[3.295 2 7.98]

1 2 1 50.865
[10.48 23.82]

[10.48 2 24.77]

I I 2 81.147
[6.00524.21]

[6.005 2 16.22]

[5.237 2 3.82]

1 I 3 1 96.124 [5.237 2 14.3]

[5.237 2 24.77]

[3.492 2 3.82]

1 4 I 265.390
[3.492 2 10.8]

[3.492 2 17.79]

[3.492 2 24.77]

[3.295 2 1.39]

2 2 I 72.259
[3.295 2 7.98]

[10.48 2 3.82]

[10.48 2 24.77]
2

[10.48 2 3.82]

II 2 2 92.040
[10.48 2 24.77]

I
[6.005 24.21]

[6.005 2 16.22] big

6

small

0.0
1
L-~~-~====-~-F===-~_-.J

0.8

1.0

0.2

c:

~
c:
.2 0.6
Q.
:c
l!!
.2l 0.4
E
e
::0

Fuzzy
Performance Premise parameters

Step partition
index E [a b c]in Eq.(6)

LIT, LIT,

2 I 56.974
[3.295 2 1.39]

[3.295 2 7.98]

1 2 73.840
[10.48 2 3.82]

[10.48 2 24.77]

[1.648 2 1.39]

I 3 I 55.681 [1.648 2 4.685]

[1.648 2 7.98]

[1.098 2 1.39]

4 I 101.635
[1.098 2 3.587]

[1.09825.783]

[1.09827.98]

[1.594 2.004 1.344]

[1.6172.0214.666]

2 3 2 130.325 [1.6741.9847.961]

[10.472.0143.821]

[10.48 1.97824.77]

bigsmall

o.a

1.0

c

~
c
.2 0.8
Q.

~
~ 0.4
E.,
::0

0.2
Fig. 5 Membership function for the variable LlTz

Fig. 4 Membership function for the variable LlT7

If L1Tz is medium,

then 0=-24.03+9.00* L1Tz+ 10.30* L1T7 (8)

If L1Tz is big,

then 0= 13.32-2.23 * L1Tz+17.24 * L1T7

4.4 Analysis of model performance

To evaluate the developed thermal error model,

new experimental data were obtained using the

same manner as described in the previous section.

10 15

sr, ,'C

20 25 Fig. 6 and Fig. 7 represent a comparison between

the measured thermal error data, the values

predicted by the developed fuzzy model and two

comparative models: an engineering judgement

modeljYang et al., 1996) and a linear regression

model (Hwang et al., 1999). Table 3 lists the

prediction performance of the models used for

comparison.

Figures 6 and 7 and Table 3 show that the

prediction performance of the fuzzy models is

very good even though the number of variables

used in the fuzzy models is less than that of two

other models. In practical perspective, two
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,.., r-- - - ---- - - ---------,

5. Conclusions

minimum number of variables is two.

In this study, a thermal error model with two

variables as the minimum number could be

obtained using a fuzzy logic strategy. The reduc­

tion of the number of variables achieved by fuzzy

partition and the developed fuzzy model could

guarantee the prediction performance. The

economical efficiency and the reduction effect of

sensor uncertainty such as a unexpected sensor

fault can be regarded as the typical advantages in

developing or using a thermal error compensation

system. The thermal error modeling method

proposed in this study can be widely applied to
any type of CNC machine tool if a combination

of the possible input variables is determined

because the parameters of the error model are

only calculated mathematically based on the

number of temperature variables.

A thermal error model for a CNC machine tool

with minimum number of variables was
developed using a fuzzy logic strategy. Based on

this study, the following conclusions were made:

(1) A thermal error model with two variables

as the minimum number could be obtained using

a fuzzy logic strategy. The reduction of the num­

ber of variables could be complemented by fuzzy

partition. The developed fuzzy model showed

very good prediction performance even though

the number of variables in the fuzzy model was
less than that of other comparative models, such

as an engineering judgement model and a linear

regression model.

(2) The thermal error model with fewer

variables can produce the reduction of tempera­

ture sensors, therefore, the economical efficiency

and the reduction effect of sensor uncertainty,

such as a unexpected sensor fault can be expected

in developing or using a thermal error compensa­
tion system.

(3) The thermal error modeling method

proposed in this study can be applied to any type

of CNC machine tool if a combination of the

possible input variables is determined because the

error model parameters are only calculated

---.....
- PreoIaaII:Iwu. by tuuy mod.. CCASt If}-- -.._.--
......,....~.,....... tlI7 ..... ~...,rnodeI

- ..........-
- - - .. .....,-(l:AU Q
--~ I)y~~1'I"ClOeI
-~y by.,...~modeI

Prediction performance of the models used
for comparison

120

lOCIe
~ eo

~
~ 10

Jl

I
'" 20

120

Table 3

10 15 ~ ~ ~
Observation ,.._

Fig. 7 Comparison between measured thermal error,
values predicted by developed fuzzy model
(CASE n) and two comparative models

to 15 20
Observation ,.._

Fig. 6 Comparison between measured thermal error.
values predicted by developed fuzzy model
(CASE I) and two comparative models

variables may be the minimum number for the

error model. However. if the prediction perform­

ance of the fuzzy model with two variables is poor

than that of the fuzzy model with three variables,
it can not be said that two variables is the mini­

mum number. Yet, the above results show that the

~
Fuzzy model Engineering Linear

Term CASE I 'CASE niudgement mo regression
del model

dT,. at; dT.. dT1.
dTz. at:..

Variables dT1. dT,3. dT,'.
dT.

dT1
st». dT13'

dT1. dT.

R' 0.9673 0.9704 0.9612 0.9672

Standard
5.49 6.27 5.78

errorf um)
5.77
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mathematically based on the number of tempera­

ture variables.
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